
Bachelor Project

Czech
Technical
University
in Prague

FEL Faculty of Electrical Engineering
Department of Computer Science

Progressive Web Application Pingl

Vojtěch Rychnovský

Supervisor: Ing. Martin Ledvinka
May 2020

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

466198Personal ID number:Rychnovský VojtěchStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and TechnologyStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Pingl - A Progressive Web Application

Bachelor’s thesis title in Czech:

Progresivní webová aplikace Pingl

Guidelines:
1. Analyze the field of progressive Web applications (PWAs) and their
restrictions on various platforms. Analyze also the principles of designing
adaptive user interfaces for such applications.
2. Review existing technologies for developing PWAs. Take into account
their ability to overcome platform-specific PWA restrictions with respect
to the functionality of the Pingl application.
3. Design the progressive Web application Pingl. In it, users would be able
to list nearby restaurants with menus, search for restaurants, or view them
on a map. The design should take into account the requirement of running
on various devices (desktop, tablet, smartphone).
4. Implement the restaurant-selection part of Pingl based on your design.
5. Conduct user testing of your implementation, simulating typical Pingl
usage scenarios.

Bibliography / sources:
[1] R. Wieruch, The Road to learn React: Your journey to master plain yet
pragmatic React.js, 2018
[2] T. Ater, Building Progressive Web Apps: Bringing the Power of Native
to the Browser, O'Reilly Media, 2017
[3] J. J. Garrett, The Elements of User Experience: User-Centered Design
for the Web and Beyond, New Riders, 2010

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Ledvinka, Knowledge-based Software Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 14.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Martin Ledvinka

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I am highly thankful to my supervisor
Ing. Martin Ledvinka for support and
guidance during my work on this bachelor
thesis. Equally, I would like to thank the
Czech Technical University for knowledge
given to me during my studies.

Declaration
I hereby declare that I have completed
this thesis independently and that I
have mentioned all the used information
sources in accordance with the Guideline
for compliance with ethical principles in
the course of writing final theses.

In Prague, 22. May 2020

v

Abstract
Thanks to Pingl web application, gastro
business customers can order and pay
without waiting, whether they want to
order a takeaway for a certain time or
are already sitting at a restaurant table.
For takeaway orders, a clear and intuitive
gateway to the application is required. It
is the part where the customer chooses a
restaurant according to the entered crite-
ria or the location. Also, the user should
see individual meals nearby.

In this work, the prototype of this gate-
way was implemented as a progressive
web application (PWA). The resulted app
was user-tested. This implementation was
preceded by a detailed analysis of PWAs,
their capabilities and limitations that ex-
ist for them in operating systems of var-
ious mobile and desktop platforms. The
work also includes an analysis of technolo-
gies for PWA development.

Keywords: Progressive Web
Applications, React, Pingl

Supervisor: Ing. Martin Ledvinka

Abstrakt
Díky webové aplikaci Pingl si mohou zá-
kazníci gastro podniků objednat a zaplatit
bez čekání, ať už si chtějí objednat takea-
way na určitý čas, nebo již sedí v restau-
raci u stolu. Pro takeaway objednávky
je nutná přehledná a intuitivní vstupní
brána do aplikace, část, kde si zákazník
vybere restaurace podle zadaných kritérií
nebo podle lokace. Zároveň by měl uživa-
tel mít možnost vidět i jednotlivá jídla v
okolí.

V rámci této práce byl naimplemento-
ván prototyp této vstupní brány ve formě
progresivní webové aplikace (PWA). Vý-
sledná aplikace byla uživatelsky otesto-
vána. Této implementaci předcházela de-
tailní analýza PWA, jejich možností a
omezení, která pro ně existují v operač-
ních systémech různých mobilních i desk-
topových zařízení. Součástí práce je také
analýza technologií pro vývoj PWA.

Klíčová slova: progresivní webové
aplikace, React, Pingl

Překlad názvu: Progresivní webová
aplikace Pingl

vi

Contents
1 Introduction 1
2 Progressive Web Apps 3
2.1 What is PWA? 3
2.1.1 PWA Principles 3
2.1.2 Difference between PWAs and
Hybrid Applications 4

2.1.3 Transition from Websites to
Modern Web Apps 5

2.2 Service Worker 6
2.2.1 Service Worker Lifecycle 7
2.2.2 Listening for Events 8

2.3 Cache Storage API 9
2.3.1 Caching Strategies 10
2.3.2 Storage Quotas 11

2.4 Web App Manifest 11
2.4.1 Manifest Properties 11

2.5 Selected PWA Features 13
2.5.1 Installable PWA - Add to Home
Screen . 13

2.5.2 App-like PWA - Fullscreen
Experience . 14

2.5.3 Re-engageable PWA - Web
Push Notifications 15

2.5.4 Reliable PWA - Background
Sync . 19

2.6 Security Considerations 19
2.7 Performance Optimisation 20
2.8 PWA Compatibility 21
2.9 PWA Disadvantages 21
2.10 Real-World Examples 21
3 Technologies for PWA
Development 23
3.1 Typescript 23
3.2 SPA JS Frameworks 24
3.2.1 Angular 24
3.2.2 React . 25
3.2.3 Choosing the Right Framework 26

3.3 Google Workbox 27
3.3.1 Routing & Caching 27
3.3.2 Precaching 28

3.4 Testing with Lighthouse 28
4 Pingl.app - PWA 29
4.1 Project Scope 29
4.2 Requirements 30
4.2.1 Functional Requirements 30

4.2.2 Non-Functional Requirements 30
5 Pingl.app - User Interface 31
5.1 Screens . 31
5.2 Wireframes 31
6 Pingl.app - Implementation 35
6.1 Deployment Architecture 36
6.1.1 Backend 36
6.1.2 Frontend 36

6.2 Project Setup 36
6.2.1 Used Frameworks and
Technologies 36

6.2.2 Code Quality Tools 37
6.2.3 CI/CD Pipelines 37
6.2.4 Folder Structure 38

6.3 Frontend Architecture 38
6.3.1 Components 38
6.3.2 Redux Store 39
6.3.3 GraphQL API Client 40

6.4 Implemented Functionality 42
6.5 PWA Features 46
6.5.1 Service Workers 46
6.5.2 Push Notifications 47
6.5.3 Offline Support 48

6.6 Testing . 48
6.6.1 Testing with Lighthouse 49
6.6.2 Unit Testing 49
6.6.3 Performance Testing 49

7 Pingl.app - User Testing 53
7.1 Preparation 53
7.1.1 Target Group 53
7.1.2 Environment 53
7.1.3 Pre-Test Screening 53

7.2 Test Cases 54
7.3 Test Report 54
7.4 Results . 56
8 Conclusion 57
Bibliography 59
A Content of the enclosed CD: 63

vii

Figures
2.1 Service Worker Lifecycle 7
2.2 Service Worker with a Cache 9
2.3 Web Push Sequence Diagram [18] 18

5.1 Pingl.app Mobile Wireframes -
part 1 . 32

5.1 Pingl.app Mobile Wireframes -
part 2 . 33

5.2 Pingl.app Desktop Wireframe . . 34

6.1 Asynchronous data fetching with
Redux thunks and GraphQL API . 40

6.2 Composition of Apollo Links . . . 41
6.3 Sections of the Main Page 44
6.4 Possible types of QR codes 45
6.5 Page Load Times 50

Tables
6.1 Results of load time testing 50

7.1 Results of the survey before user
testing . 53

viii

Chapter 1
Introduction

Progressive Web Application (PWA) is a buzzword widely used in today’s
world of web developers. PWAs have appeared continuously as a set of trends
and intentions behind building modern websites without having any particular
release date. However, suddenly, if we take a look at all changes which have
happened in the last years, we can distinguish a clear concept - websites are
able to operate almost the same way as native apps do, but they still keep all
the advantages of traditional websites.

Alex Russell, Google Chrome engineer, wrote in 2015 an article[1] where
he and his coworker and wife Frances Berriman gave them the name "Pro-
gressive Web Apps". Nowadays, we can see many large companies using PWA
technologies to help them with building online platforms for their customers,
which have a much higher conversion rate than conventional websites.

PWAs sum up a new perspective on how developers can build web apps
and how they have delighted user experience with many new features that
were unimaginable at the early age of web development.

This work aims to:..1. highlight and explain the main capabilities of PWAs..2. research technologies usable for PWAs development..3. design a responsive user interface of Pingl app..4. implement a prototype of Pingl app as a PWA..5. conduct user testing of the implementation

1

2

Chapter 2
Progressive Web Apps

2.1 What is PWA?

PWA abbreviation stands for Progressive Web Application. PWA is a hybrid
between a traditional web page and a native application1, meaning it is a web
page that implements some of the functionality that was traditionally widely
seen only in native apps. There is no particular set of features that the web
site has to implement to be considered as a PWA, but the most common ones
are the ability to be installed to the home screen, the ability to work offline
and to persist data between user sessions. Then based on the use case of the
app, the app usually enriches the user experience by push notifications or
access to device hardware, such as the camera.

2.1.1 PWA Principles

Any Progressive Web App should be reliable, fast and engaging. These general
principles can be described by more specific characteristics: [1]..1. Reliable:.Progressive - the PWA should work in any browser, even when it

does not support PWA features (this approach is called progressive
enhancement).Responsive - the PWA should have a layout that adapts to any
screen size (desktop, mobile, tablet, etc.). Safe - the PWA has to be served over a secure connection (TLS).Connectivity Independent - by implementing a service worker
as a client-side proxy, the PWA can control caching and can provide
resources even when the Internet connection is not available..2. Fast:. Fast load times - the PWA can implement a service worker to
cache files and serve them without waiting for a remote request

1The term native application refers to an app written specifically targeting one platform
or device

3

2. Progressive Web Apps.................................
. Fresh - the PWA is always up to date, there is no need to open

the app store to update the app as it is in the case of native apps..3. Engaging:.App-like - the PWA offers an immersive fullscreen experience
without browser tabs and bars. The web feels like a native app..Re-engageable - the PWA can reach users with push notifications
even after they have closed the browser, which directly leads to
increased user engagement and higher customer conversion (i.e.
converting a site visitor into paying customer).. Installable - users can add the PWA to the home screen directly
from the browsers without opening the app store. The PWA can
control this process with Web App Manifest and modify the app
name, icon or splash screen or screen orientation. Linkable - the PWA should be deep linkable and should provide a
unique URL for every route in the app, which can be shared as a
link with other users

In general, the main intention behind PWA is to bring app-like experience
to the web browser. It is necessary to mention that PWAs are not restricted
to be used only in mobile devices. As the PWA is still a website and its core
is a JavaScript file, it can also be used in any desktop environment with a
web browser. The main reasons why to implement PWA on desktops are
push notifications and offline capabilities.

In this work, I will look closely at their features and implementation for
mobile devices, but a majority of these principles can also be applied to the
desktop environment.

2.1.2 Difference between PWAs and Hybrid Applications

There is an emphasis on the word "progressive" in the PWA abbreviation
because of an intention to distinguish PWAs and hybrid applications.

Hybrid application has a "shell" written as a native app encapsulating a web
view with a web page, which is written as a conventional website. These apps
use native code to implement platform-specific functions or functions that
are not accessible from the web browser. These functions are usually more
tightened to the operating system of the device, for example, push notifications
or access to the device file system. Also, the native part of the app can,
after user permits them, read data of other apps (contacts, call history, etc.).
Native code can additionally take advantage of the accelerometer and other
communication peripherals such as Bluetooth or NFC. Because of the native
shell with an embedded browser, users have to download them from the
application store of their platform (App Store for Apple and Google Play for
Android).

On the other hand, PWAs progressively take advantage of new web tech-
nologies - if they are not present, the app operates as a conventional website

4

....................................2.1. What is PWA?

(or at least it should). Moreover, PWAs are entirely written in JavaScript,
which slightly limits their capabilities, but gives them a huge benefit - users
can use them without downloading any app from the app stores.

Hybrid Apps:

Pros:. the content of the web-view can be updated easily only by updating the
website on the server. development of a hybrid app is faster in comparison to native apps, which
also results in a lower cost of the app. the web part of the app is shared between multiple platforms

Cons:. it is necessary to write native code, which means the development team
has to have more comprehensive knowledge or larger amount of members. if the app lacks enhanced functionality over the encapsulated website,
Apple App Store can reject this app during approval process, because of
one of the store requirements: "Your app should include features, content,
and UI that elevate it beyond a repackaged website." [2]

Progressive Web Apps:

Pros:. they have all the advantages of hybrid apps - fast development, shared
code between platform, instant distribution of updates. they target all platform without a necessity to write any native code

Cons:. capabilities of these apps are limited. the support of some features can vary between web browsers

2.1.3 Transition from Websites to Modern Web Apps

In the past, traditional web pages were used only to display content served
from web servers, and the client-side was intended to be plain, leaving all logic
functionality on the server. Since users started using more powerful machines
to open those webpages, it became apparent that the website owners wanted
to bring more of the computations and logic to the client-side to lower the
requirements on the server.

The other factor that strongly helped to bring more logic to the client-
side was the rise of JavaScript in recent years. JavaScript frameworks like

5

2. Progressive Web Apps.................................
React or Angular help developers to quickly build web applications with rich
functionality. In these frameworks, we even skip writing the plain HTML code,
and the HTML elements are rendered using JavaScript. By this approach,
we can easily bind functions to these elements and react to various events,
including user click and touch or any other possible events. Also, because
the UI is completely rendered on the client-side, there is no need to fetch
another HTML file when the user navigates through the website. All HTTP
requests are made asynchronously without refreshing the browser tab using
XMLHTTPRequest or Fetch API. This approach is also called SPA (Single
Page Application).

The other area that has changed a lot is the user interface. As more
and more users browse websites using mobile devices (in fact, according to
statistics, nowadays, the number of mobile visits has exceeded the number of
desktop visits [3]), the design of websites had to change. Websites and native
applications got more similar to each other, and many websites started to be
designed in a mobile-first approach. Responsive design2 became a standard
in modern web development. This is accomplished by using @media-queries
in CSS (Cascading Style Sheets).

So after this shift, there are users having devices with enough computational
power, who access our websites, that are precisely designed for various mobile
sizes, the rich functionality of the app is provided by JavaScript code. It is
clear that if we push this modern website a little bit further, we can give
users app-like experience on the web.

2.2 Service Worker

The core JavaScript file of a PWA is called a Service Worker.

A service worker is a script that can be registered to control one
or more pages of your site. Once installed, a service worker sits
outside of any single browser window or tab. Events such as requests
for files from the web can be intercepted, modified, passed on, and
returned to the page. [4]

Key aspects of service workers:. Service Worker is a JavaScript file. Service Worker is a layer between the web page and remote server, which
can listen to events and modify responses. This script is not dependant on browser tab - it works even when the
tab is closed. It cannot access the DOM directly

2Term "responsive design" means rendering webpages based on size and orientation of
the screen

6

....................................2.2. Service Worker

. It runs in its own context (separated from window global context)

Service Workers use-cases [5] include acting as a client-side network proxy
enabling caching using Cache Storage API, or as a receiver for push notifica-
tions.

2.2.1 Service Worker Lifecycle

Before a Service Worker is active, it goes through a few states [6]. Service
Worker is event-based and can listen to various events triggered during its
lifecycle. These states and corresponding events are shown by Figure 2.1.

Figure 2.1: Service Worker Lifecycle

Registration

First, it is necessary to check if the browser supports Service Workers, then
the Service Worker can be installed. Supported browsers will use an enhanced
site with Service Workers, while others will display the website without PWA
functionality.

if ("serviceWorker" in navigator) {
navigator.serviceWorker.register("/serviceworker.js")

}

Scope of Service Worker
Service Worker can listen and modify only events coming from its scope. The
scope is defined by origin and a folder, where the Service Worker is placed.
When registering, the scope can be set to a smaller subset, but can not be
extended.

Installation

Installation happens only if the browser considers the Service Worker as new.
This will happen only under these conditions: there is either no installed
worker, or there is a byte difference between the new and the current worker.

Activation

After installation, the service worker is activated, only if the current Service
Worker is no longer controlling any page. If there are any pages controlled

7

2. Progressive Web Apps.................................
by an old service worker, the new service worker will stay in Waiting phase,
until all tabs are closed. By this approach, we can be sure that only one
version of the Service Worker is installed at a time. However, this logic can
be overridden and the Service Worker can force to control all pages by calling
a function clients.claim().

2.2.2 Listening for Events

When the worker is Activated, it controls all pages within its scope and it
listens to events triggered by the controlled page. Listener can be registered
in a very similar way as in window scope:

self.addEventListener("eventName", function(event) {
// Perform some tasks here

})

List of Possible Events:. install - Service Worker can typically precache all necessary files during
installation, so it can rely on their availability even when the device goes
offline. Install phase can be extended by calling event.waitUntill()
untill all resources are fetched.. activate - During this event, the Service Worker typically deletes old
unnecessary caches created by previous instances of the Service Worker..message - Because the Service Worker can not access the controlled
page directly, Channel Messaging API has to be used. After registra-
tion, the page receives a reference to the Service Worker and can use
postMessage() function to send messages to it. Listener to message
event is the place, where the Service Worker will receive this message.. fetch: Service Worker can listen to every request sent from the page. It
can pass the request to the remote untouched, or it can retrieve the re-
source from a Cache Storage instead of from the remote server using one
of the cache strategies discussed in Caching Strategies (subsection 2.3.1).. push - PWAs can use Push API to receive notifications from remote
server. When the event is triggered, the Service Worker can react to
this event, typically by showing a notification using Notification API.
Example of this functionality is shown in Re-engageable PWA - Web
Push Notifications (subsection 2.5.3).. sync - PWAs can use Background Sync API to defer actions until the
user has stable connectivity. At that moment, the listener to the sync
event is triggered, and the Service Worker performs the deferred task.
Example of this functionality is shown in Reliable PWA - Background
Sync (subsection 2.5.4).

8

.................................. 2.3. Cache Storage API

2.3 Cache Storage API

Caching is the most common use-case of Service Workers. By using a client-
side cache, we can deliver resources without the need to send HTTP requests
through the network. The response from the cache is faster and can be
returned even when the client is offline, which is a key part of PWA function-
ality.

Figure 2.2: Service Worker with a Cache

The CacheStorage interface represents the storage for Cache objects.
It provides a master directory of all the named caches that can be
accessed by a ServiceWorker or other type of worker or window scope.
It maintains a mapping of string names to corresponding Cache
objects. [7]

Methods of CacheStorage Interface [7]:.CacheStorage.open(cacheName: string)3 - returns a Promise re-
solving to a reference to a newly created Cache object with the passed
name or to an existing one.CacheStorage.delete(cacheName: string) - deletes a cache by its
name. Returns a Promise which resolves to true, if the cache has been
deleted, or to false otherwise.CacheStorage.keys() - returns a Promise resolving to an array of cache
names.CacheStorage.has(cacheName: string) - returns a Promise resolv-
ing to true, if any cache with passed name exists, or to false otherwise.CacheStorage.match(request: Request) - returns a Promise resolv-
ing to a corresponding cache entry in any of the Caches in CacheStorage,
otherwise the promise is rejected

3From this point, for better clarity of functions parameters, I will use TypeScript-like
notation in form of (parameterName: Type)

9

2. Progressive Web Apps.................................
Methods of Cache stored objects are similar to CacheStorage. We can

put() a request to the Cache, or we can use add() method which is equivalent
to calling fetch() and then put(). A cache entry can be deleted from Cache
by calling delete(). Methods match() and matchAll() retrieve items from
the cache. These methods return a Promise.

The CacheStorage is heavily used by Service Workers. The typical use-case
is:..1. Open new or existing cache during the install phase and add to it all

resources, which should be prefetched. The ServiceWorker is not active
until all these resources are saved in the cache...2. Listen to fetch events and according to a selected caching strategy,
return the response from a remote server or return prefetched file.

2.3.1 Caching Strategies

Based on the requirements for the cache, we can choose one of cache strategies.
If we get the request from the cache, it may not be the newest version, but
the response time is almost immediate. On the other hand, if we always get
the up-to-date version from the remote server, our app has to wait until the
request is made. In one Service Worker, it is common to combine multiple of
these strategies for different types of resources.

List of Caching Stategies [7]:.Cache only - Resources are usually cached during the install phase.
Then they are returned without sending the request to the remote server.
This method is used for static, non-changing assets..Network only - Resources are fetched from the remote without querying
the cache. This method is used for logs and page views analytics..Cache, falling back to network - Resource is queried from the Cache,
and if it is not found, it is fetched from the network..Network, falling back to cache - Resource is fetched from the network,
and if the request fails, then the cache is used as a fallback..Cache, then network - Resource is queried from the Cache and re-
turned immediately. At the same time, a network request is sent to get
an up-to-date resource and the response is put to the cache instead of
the old one. This approach can require some modification in the app to
send two requests - one to get resource from cache and the second to get
the new version..Generic fallback - If the resource is not available in the cache and the
remote server can not be reached, then a generic fallback can be used.
In a case of images, a gray image can be used as a fallback.

10

.................................. 2.4. Web App Manifest

2.3.2 Storage Quotas

Browser storage space is limited per Origin4 and is shared between Cache
Storage API and other storage options such as IndexedDB or Local Storage.
The quota is not defined in the specification and varies between browsers and
is dependant on storage condition.

In general, it ranges between 50MB and 20GB [9]. Some browsers will
notify the user when certain limits are overreached (for example desktop
Firefox at 50MB). The most strict is mobile Safari limiting the storage to
52MB, but in this case, the IndexedDB is excluded from this amount.

2.4 Web App Manifest

Web App Manifest is a file in JSON5 format describing how a PWA should
behave when it is installed on the home screen. Though the prefered extension
is .webmanifest, the .json extension is also allowed. In both cases, it is
recommended to label the file with "application/manifest+json" MIME
Type.

This file should be linked from the Head of HTML document by Link tag:

<link rel="manifest" href="/manifest.webmanifest">

2.4.1 Manifest Properties

List of manifest allowed properties [11]:

Language Style:. dir - ["ltr" | "rtl" | "auto"]6 - this property specifies the base text
direction of other manifest properties and will affect how they will be
displayed. It should be set consistent with the lang property. Text in
LTR languages is displayed from "left to right", RTL languages will be
displayed from "right to left".. lang - [string] - this property specifies the language of other manifest
properties in format "en-US"

App Names:. name - [string] - represents the application name. This property will
be used in "Add to Home Screen" dialog (even though this property is
mandatory, if it is not provided, the name of the app will fallback to
short_name, and the "Add to Home Screen" dialog will appear)

4Web content’s origin is defined by the scheme (protocol), host (domain), and port of
the URL used to access it. [8]

5JSON (JavaScript Object Notation) is a lightweight data-interchange format containing
a collection of name/value pairs and an ordered list of values. [10]

6Values in square brackets specifies the form of allowed values. It can be either a set of
allowed values, or a type of the value.

11

2. Progressive Web Apps.................................
. short_name - [string] - this name will be used as the app name next

to the app icon on the home screen

App URLs:. start_url - [string] - the PWA will launch on this route when the user
opens it from the home screen. This means that our app has only one
entry point regardless of the subpage, where the user was located when
he installed the PWA.. scope - [string] - sets the scope of current manifest. If a user navigates
outside of this scope, the app will change to the normal browser window.
The scope is relative to the manifest file (/folder), or can be set as
absolute URL (https://example.com/folder/).

App Style:. icons - [array of objects { src: string, type: string, sizes: string }] - this
icon will be used as the app icon on the home screen (it can be different
from the favicon). orientation - ["any" | "natural" | "landscape" | "landscape-primary"
| "landscape-secondary" | "portrait" | "portrait-primary" | "portrait-
secondary"] - this property specifies the orientation of the display. display - ["fullscreen" | "standalone" | "minimal-ui" | "browser"] - this
property specifies the preferred amount of browser’s UI controls around
the app.. background_color - [string] - the browser will set this color as a
background until the main stylesheet is loaded. On Android, this color
is used for the Splash Screen. theme_color - [string] - this property changes the color of UI elements
of the browser (especially Android status bar)

Other allowed properties:. categories, description, iarc_rating_id, screenshots - categoriza-
tion properties, they are intended to by used by PWA stores in the
future. related_applications, prefer_related_applications - specifies the
equivalent native apps with the same functionality, the browser may
suggest installation of them to the user. shortcuts - describes key tasks in the PWA, where the operating system
can guide the user, for example, "start playing the first song from my
favorite playlist". OS can suggest these actions to the user, for example,
after a long press of the app icon.. serviceworker - defines Service Worker location

12

................................ 2.5. Selected PWA Features

2.5 Selected PWA Features

2.5.1 Installable PWA - Add to Home Screen

Probably the most significant feature PWAs have, is the possibility to have
an icon on the home screen or desktop. Then on most of the platforms, the
app is indistinguishable from a native app. Users are more likely to open the
app again if they see the icon on their screens everyday than if they have to
type the URL to the browser.

If the browser should allow users to open the "Add to Home Screen" dialog,
it has to recognize these features on the website:. Secure origin - the website has to be delivered over TLS (HTTPS) to

ensure, that the content of request was not modified between the browser
and the server. Service Worker - it has to be registered within the scope of start_url
specified in Web App Manifest, and it has to return some response even
when the device is offline (the full offline functionality of the app is not
needed)..Web App Manifest with a minimum configuration of these proper-
ties: name or short_name, start_url, display (set to other value than
browser), icons (at least one square .PNG icon of size at minimum
192x192 px)

If all these conditions are met, and the browser supports the service workers,
then the user can tell the browser to install the PWA.

Prompting the user to install the PWA

The process of manual installation of the PWA to home screen differs between
different platforms and usually is not really user-friendly. Also, the users may
not be aware that the website is a PWA and can be installed. Browsers provide
a solution for this - if the app can be installed, an event beforeinstallpromp
on window element will be fired. The app can attach a listener to this event,
which will receive a deferredPrompt as a parameter and can decide whether
to trigger a prompt() function on this deferredPrompt. The prompt()
function can be fired only once on the deferredPrompt and can be called
only from a click handler, so if the user dismisses the prompt, the next prompt
can be shown only after page refresh.

Also, the prompt should not disturb the user, and it should be used only
if the user can benefit from it. For example, the app can suggest the user
to install the app after his first purchase, or there can be a banner with a
sign for example "Install the app and read our articles while offline". By this
approach, the user will see the benefits of installing and will be more likely
to click on the install button.

13

2. Progressive Web Apps.................................
A simple PWA implementation is demonstrated in an example project:

https://github.com/rychnovsky/pwa_examples/tree/master/01_insta
llable_pwa.

2.5.2 App-like PWA - Fullscreen Experience

If a user opens a PWA from an icon on his home screen, he expects the app to
be fullscreen and not to be in a browser window. This particularly concerns
mobile devices, PWAs should look like native apps.

On Android

On Android (Google Chrome) the support of Web App Manifest is high,
and we can use its properties theme_color to set status bar color and
background_color to set splash screen background.

On Safari

Apple Safari uses its own proprietary meta tags to ensure that developers
will customize all asset to match Apple ecosystem [12].. webmanifest display property is partially ignored. Both Fullscreen and

standalone values results in fullscreen view, and both minimal-ui and
browser results in the classic Safari browser UI.. webmanifest icons are ignored completely, an extra meta tag has to be
used to set home screen icon instead
<link rel="apple-touch-icon" href="apple-icon.png">. splash screen (also called launch screen in Apple termininology) can be
set by meta tag. If it is not provided, a screenshot of the app will be
used.
<link rel="apple-touch-startup-image" href="/launch.png">. status bar can be set to default | black | black-translucent. Default
stands for white bar with black text, black is the default value and
stands for black bar with black text (so the text is not visible) and
black-translucent sets the bar to the same color as body background
with white text.
<meta name="apple-mobile-web-app-status-bar-style" content="black">

Further Customization

On both platforms the app can be further restricted by disabling zooming (by
meta tag viewport set to user-scalable=no) or by disabling user gestures
(by applying CSS rule -webkit-user-select: none;).

Manifest property orientation is ignored in Safari and the only workaround
is to apply a rotation transformation to whole body by CSS rule.

14

https://github.com/rychnovsky/pwa_examples/tree/master/01_installable_pwa
https://github.com/rychnovsky/pwa_examples/tree/master/01_installable_pwa

................................ 2.5. Selected PWA Features

On both platforms, we can check by JavaScript if the web is installed as
PWA and viewed in a native-like window. In Safari, the check can be done
by accessing property window.navigator.standalone (boolean), in Chrome
the check has to be done by checking display mode:
window.matchMedia(’(display-mode: standalone)’).matches

To apply CSS rules only for when the app is in standalone mode, the
MediaQueries can be used:

@media all and (display-mode: standalone) { /* rules here */ }

A simple PWA implementation with app-like styling is demonstrated in an
example project:
https://github.com/rychnovsky/pwa_examples/tree/master/02_app_l
ike_experience.

2.5.3 Re-engageable PWA - Web Push Notifications

For some businesses, it is crucial to keep users engaged even after they
have left the website and target them with banners and rich advertising. In
other use-cases, the app wants to notify users or deliver a small amount of
information to them in real-time. For these short real-time updates, push
notifications should be considered as a solution.

These web push notifications appear in the standard native notification
center of the device, having the same form as any other notification from
any other native app. Notifications can be triggered locally from the website
or can be pushed from a remote server and they will appear in real-time
even when the website is closed. To manage notifications, two APIs are used:
Notification API and Push API.[13]

Notification API [14]

This API lets us display notifications on the device. To prevent any visited
website from showing dozens of push notifications and flooding user’s device
with unwanted advertisements, the website has to ask for permission first.
Some browsers such as Mozilla Firefox even block all notifications from
websites that show notifications before they ask for permission.

Notification.requestPermission(result => {
if (result === ’granted’) {

// notifications can be shown
}

})

After granting the permissions, a notification can be shown using Notification
constructor.

new Notification(title: string, options: NotificationOptions)

This notification can be modified using options parameter. Support of these
options varies between browsers. The commonly used ones are:

15

https://github.com/rychnovsky/pwa_examples/tree/master/02_app_like_experience
https://github.com/rychnovsky/pwa_examples/tree/master/02_app_like_experience

2. Progressive Web Apps.................................
. body - [string] - text of the message in the notification. icon - [string] - URL of an icon which will appear in the notification. image - [string] - URL of an image which will appear in the notification. actions: [Array<action: string, title: string, icon: string>] - specifies

action buttons that are visible next to the notifications. These actions
(when clicked) are passed to the service worker, which can react to them.

All major browsers support this API, except iOS mobile Safari and Internet
Explorer[15].

Notification API also introduces new functionality for the Service Workers,
which can be used while the website is closed or in background:. showNotification(title: string, options: NotificationOptions) -

shows a notification. Accepts the same arguments as Notification con-
structor does. This function is used to show notifications in push event
handler in SW.. getNotifications(options: {tag: string}) - returns a Promise re-
solving to an array of all notifications shown by the current origin. onnotificationclick - this event handler will receive an event when the
notification has been clicked and can react to it, for example, open an
address in the browser. If the user clicked on a certain action in the
notification, this action would be available as action property of the
event

None of this background functionality is available in desktop Safari, which
means that this API cannot be used to show Notifications from the back-
ground there. However, apart from this standardized API, there is Apple
proprietary solution called Safari Push Notifications[16]. It uses Apple
Push Notification service (APNs) and solely works in the desktop Safari
browser and can be used there to show push notifications in the background.

Push API [17]

The Service Worker, once registered and active, can receive push messages
even when the website is not in the foreground. First, it needs to subscribe
to these messages, and then it can attach a listener for these messages:.PushManager.subscribe(options) - accepts an options object con-

taining applicationServerKey7. Returns a Promise that resolves to a
PushSubscription object containing endpoint, which is an URL, where
the app can send messages to this subscription. This URL should be

7This key is a public server key used for an identification of the message sender. When
specified, a signed JWT token with the private key has to be send with every push message.
This is called VAPID (Voluntary Application Server Identification).

16

................................ 2.5. Selected PWA Features

passed to the application server, which will send these messages. It
should be kept secret, otherwise, other apps would be able to use this
subscription to send notifications to the device.. onPush event - this is the event handler, where Service Worker receives
the content of push messages and reacts to them. Typically, it shows
a notification, but the content of the messages can also be saved to
IndexedDB.

Permissions for using Push API are shared with Notifications API - once
the user allows Notifications, the Push API can be used as well. Push API
is not supported in both desktop and mobile Safari browsers and Internet
Explorer.

These two APIs together form the required steps to receive push notifica-
tions on a website:..1. Ask for a permission to use notifications..2. Register a service worker..3. Subscribe to messages..4. Save the subscription on the application server..5. Send a message from the application server to a push service server..6. Receive the message in the Service Worker in onpush event..7. Show the notification

The process of sending push messages using push messaging service is illus-
trated in a sequence diagram Figure 2.3.

Push Messaging Services

To send notifications to multiple platforms (web, native iOS, native Android,
etc.), push messaging services are used. They offer a unified and simple API
and handles the delivery of messages to all these platforms. These services
vary in pricing, but for many use-cases, they are free. The choice usually
depends on other services provided by these services, for example hosting,
databases, or machine learning functions. Examples of these services are:. Firebase Cloud Messaging - https://firebase.google.com/docs/clo

ud-messaging/. Amazon Simple Notification Service - https://aws.amazon.com/sns/. IBM Push Notifications - https://www.ibm.com/cloud/push-notific
ations

17

https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://aws.amazon.com/sns/
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications

2. Progressive Web Apps.................................

Figure 2.3: Web Push Sequence Diagram [18]

Push Notifications Alternatives

The above-discussed web push notifications allow real-time delivery of updates
to the users in a form that is familiar and intuitive to all of them, but their
most significant drawback is a lack of support in iOS mobile browsers. To
deliver information also to this group of users, we can use other alternative
methods and channels, each offering different balance between price, audience
width, and speed of delivery:. SMS - available to all mobile platforms, but higher price. EMAIL - the user has to have an email client installed, free. Facebook Messenger - not installed on every device, free

18

................................ 2.6. Security Considerations

2.5.4 Reliable PWA - Background Sync

Background sync is a new web API that lets the app defer actions until the
user has stable connectivity. This is useful for ensuring that whatever the
user wants to send, is actually sent. [19]

The process of using the background sync is following:..1. Register a new sync event with any name. This name represents the
desired action. If any data are supposed to be passed to the Service
Worker and to be used there, they have to saved in IndexedDB.

The sync event can be simply registered using:

navigator.serviceWorker.ready.then((swRegistration) => {
return swRegistration.sync.register(’nameOfSyncEvent’)

})..2. In the Service Worker, add an eventListener for the sync event. This
event is triggered when the Internet connectivity is restored...3. Do some tasks based on the event name, for example send some data to
the app server. Additional data can be retrieved from IndexedDB.

Background Sync Use-cases

The background sync API can be used to enhance offline functionality, for
example to send messages in chatting app, after the app was closed. Other use
case can be to ensure requests reliability. In a case the server is unreachable
(it is down or not responding), the request can be repeated after some time.

It is necessary to mention, that this API is supported only in Google
Chrome, Opera and Edge browsers. [20]

2.6 Security Considerations

Because a PWA is a website, it is targeted by the same security threats.
Examples can be Cross-Site Request Forgery (CSRF) or Cross-Site Scripting
(XSS) [21]. Many other threats are in concern of the backend part of the app.

In terms of safety of the user, the PWA runs inside of a browser, so it is
encapsulated from other apps. The PWA has to ask the user for specific
permissions before it can access the device hardware such as camera or
microphone.

The PWA can register the Service Worker only if it is served over a secure
connection (HTTPS - Hypertext Transfer Protocol Secure). The Service
Worker can modify any request and response coming out of the page, so the
browser has to be assured that the Service Worker was not modified by a
third-party and is not malicious.

19

2. Progressive Web Apps.................................
2.7 Performance Optimisation

A fast load is a crucial part of the user experience when browsing the web.
When a browser displays a web page, it has to go through a Critical
Rendering Path (CRP) [22]. It consists of creating the Document Object
Model (DOM) from HTML file, then fetching JavaScript files, that can modify
the DOM. Then CSS resources are requested, and a CSS Object Model is
created. These two are combined into a Render Tree, which represents a
tree structure of all visible elements on the page. Then a Layout is created,
and it is Painted on the screen.

This process implies one critical point - the browser has to postpone the
rendering until all CSS and JavaScript files are downloaded. We can optimize
this process to reduce the load time:..1. Reduce the amount of the resources and their size by bundling (or

splitting) and minification..2. Tell the browser not to wait for a particular resource using defer and
async attributes..3. In the case of a PWA, cache these resources using Service Workers.

Using the Cache to Optimize PWA

From the perspective of PWA, using the caching is the most relevant. By using
this local cache, possible issues with Internet connectivity, server downtimes
or overload, can be overcome. We can be sure that the response from the
cache will be immediate and will not delay the rendering. Based on the type
of the resource, we have to find the most suitable caching strategy, this topic
was discussed in the Caching Strategies (subsection 2.3.1). Also, the cache
will affect only renders after the Service Worker is active, so for optimization
of the first render, we have to use other techniques.

In an extreme case, when the user opens the page for the first time, we
can prefetch all possible files, images, and resources. Then every upcoming
rendering will be very fast, but we can easily exceed storage limits (described
in the Storage Quotas (subsection 2.3.2)), and also users have limited cellular
data plans.

Other Optimization Techniques

Since the PWA works as a standard website, the same performance optimiza-
tion principles apply, and reducing the length of CRP is only one of them.
There are many other optimization techniques, such as image optimization or
optimizing execution of JavaScript, but these topics are out of the scope of
this work.

20

.................................. 2.8. PWA Compatibility

2.8 PWA Compatibility

To have a general idea of how many users we can target with PWA function-
ality, we can look at stats of Service Worker support, which is, as described
above, the core of the PWA.

Service Workers are supported by 95% of mobile devices and 90% desktop
devices [23]. This proportion gives us a huge audience we can target with
our enhanced functionality. The only downside is that we can not rely on
all browsers to support the same features and functions as other browsers
do. One example of how the functionality of a particular API differs across
browsers and their versions can be Push API enabling us to send push notifi-
cations to a user device. Google Chrome fully supports this API since version
50 released in April 2016, Safari for desktop has a custom implementation of
this API since 2016, while Safari for iOS does not support this API at all.
Some of other issues are reported by PWA Police on their Git repository8.

PWAs consist of many features whose support differs even across versions
of a single browser, so it is necessary to test each of the functionality before
using it. This approach is named progressive enhancement. The users who
use unsupported browsers will experience a standard website. It should work,
but they can notice that they lack some functionality.

2.9 PWA Disadvantages

PWAs bring to the web many exiting features, but it comes with some
downsides:. They are not distributed through app stores, and users have to open the

website via browser first. Limited access to device features such as NFC, accelerometer, contacts. Limited offline and background functionality. Support varies between devices and browsers, for example:. It is not possible to prompt the user to install the PWA on every
platform. Push Notifications do not work on iOS

2.10 Real-World Examples

PWAs are used widely across almost every industry. Here are a few examples
of successful PWA implementations:

8PWA Police repository: https://github.com/PWA-POLICE/pwa-bugs,
(accessed: Nov 24, 2019)

21

https://github.com/PWA-POLICE/pwa-bugs

2. Progressive Web Apps.................................
https://app.starbucks.com/ - Starbucks has built a PWA as a sup-

plementary tool to their native app. This PWA features advanced caching
mechanisms, and customers can browse the menu offline. Users also benefit
from smaller app size, which is 99.84% smaller than the native iOS app
(233Kb compared to 148MB). From a technical perspective, the app is built
using React JS Framework, it uses GraphQL API and Redux, and the service
worker is built on top of the Workbox Framework. [24]

https://m.uber.com/ - Uber wanted to allow customers to order rides
even on a slow connection and on devices unsupported by their native app.
Their PWA is built on Preact (a smaller and faster alternative to React).
The core app is bundled in a just 50KB file and takes less than 3 seconds to
load on 2G networks. [25]

https://www.pinterest.com/ - Pinterest has built their PWA using
React JS + Redux stack with a Service Worker built on top of Workbox
Framework. They have focused on the performance (especially fast load time)
and ended up increasing the number of users who spend more than 5 minutes
on the website by 40% in comparison to the previous old website experience.
This improvement has also gained them a 44% increase in user-generated ad
revenue. [26]

22

https://app.starbucks.com/
https://m.uber.com/
https://www.pinterest.com/

Chapter 3
Technologies for PWA Development

PWA is an application served through web browsers, therefore, it uses tradi-
tional web technologies like HTML, CSS, and JavaScript. The core of PWAs
is a Service Worker, which is also a JavaScript file. It means that it is not
necessary to use any additional programming language, but there are some
options, which can be used instead of writing plain JavaScript and HTML.
After compilation and bundling, all these options result in HTML, JavaScript,
and optionally CSS files.

These options can be divided into two parts:. using TypeScript to improve the development process. using a SPA Framework to not to write the code from scratch

3.1 Typescript

The implemented prototype in upcoming chapters will use Typescript.

TypeScript is a typed superset of JavaScript that compiles to plain
JavaScript. [27]

TypeScript makes using JavaScipt better, especially for large-scale ap-
plications. The code written in Typescript is generally more readable, the
debugging is easier and the development time for large-scale applications is
generally shorter.

As it is a superset of JavaScript, any code written in JavaSript is also a
valid Typescript code. The filename extension is .ts.

Typing

It adds static typing to JavaScript, which ensures type-integrity through the
app. Here is an example of a function taking two arguments: the first is a
number, the second is a string. The function returns a string.

function foo(a: number, b: string): string {
// some code here

}

23

3. Technologies for PWA Development...........................
If we omit the typing, the compiler will infer the type. For example, if our
function returns "abc", typescript knows, it is a string. Types can also be
declared by declaration files with extension .d.ts.

3.2 SPA JS Frameworks

The PWA usually contains a complex client-side logic in JavaScript, so in
many cases, a JavaScript framework is used. Generally, in these frameworks,
the entire client-side application is written in JavaScript. I will look closely at
the two most popular SPA (Single Page Application) JavaScript frameworks -
React and Angular.

3.2.1 Angular

Angular is a SPA Framework developed and managed by Google, written in
TypeScript. All necessary functions, such as data binding and form validation,
are included in the Angular itself. This is a considerable contrast to React,
which covers only the UI and other libraries for other parts of the app have
to be used.

Angular is a complex framework using advanced programming techniques:.Components and two-way data binding: The key elements in An-
gular are Components, which use two-way data binding - properties are
bound to the template, and events are bound the other way..Dependency Injection (DI): The shared app functionality should be
delegated to service classes. Ideally, components should be concerned
only about the view. Dependency Injection is used to get instances of
these services inside components.

Angular architecture combines MVVM (Model, View, ViewModel) and
component-based approach, meaning that View and Controllers are described
within one component: [28].Model: it describes entities used within the app. They are specified in

Service files together with functions associated with these entities..View: it consists of .html and .css file, so-called templates. By using
directives (e.g. {{}}, ng), we can describe two-way data binding between
a view and a controller..ViewModel: it is described in a .ts file. Here, DI is used to get
instances of Services, and properties are specified to be used in the
templates. If the property changes, the change is instantly propagated
to the Template.

24

................................. 3.2. SPA JS Frameworks

3.2.2 React

React is a JavaScript library for building user interfaces, that is developed
and maintained by Facebook [29]. The main concepts are:.Declarative - There is a designed view for each state of the application,

React will update and rerender the components efficiently, if the data of
the app changes..Component-Based - Components are encapsulated from each other,
can have their own state, and can be composed into tree structures.

In contrast to other complex MVC1 frameworks, React targets only View. It
means that in almost every React application, other frameworks and libraries,
such as libraries for routing, state management, or communication with APIs,
have to be added.

Rendering Elements [30]

In the HTML file, there should be a div element, where the app will be
rendered. In the case of <div id="root"></div>, the app can be rendered
by calling a render function, where App is the main component of the app:

ReactDOM.render(App, document.getElementById("root"));

Components [30]

Components are written in JSX - a HTML like syntax. The component is
then compiled to React.createElement() functions. These "raw" functions
can be also used, but JSX makes the code much more readable.

The main concept of the component is to render a view based on passed
props from the parent component. These components can be nested and
composed into the full view of the app. In React, data flows down from the
parent component to its children.

The component can have a state - for example, if the component has been
clicked. If the component does not have an internal state, we refer to it as to
a "Stateless Component".

The component can be written as a function returning a JSX Element, or
as a Class with a render method returning a JSX Element.

Component Lifecycle [31]

React Class Components goes through certain stages during the mounting
process. The main lifecycle methods during a component mount are:. constructor() - is called during initialization. The initial component

state is set here.
1MVC = Model View Controller, a type of application architecture

25

3. Technologies for PWA Development...........................
. render() - returns an element based on props and component state.

The render method should be pure, i.e. it does not modify the state of
the component.. componentDidMount() - is called only once after the component has
been mounted. API calls are made from here.

Hooks API

React Hooks let us use state and other React features in functional components
without writing a class component.[32]

It is basically a functions, whose name starts with "use" (for example
useState), and that returns the desired part of the functionality. This
function is called from the component and should not be triggered inside
loops or inside if conditions.

The basic hooks are:. useState - brings local state management to functional components. useEffect - similar to componentDidMount function on class components,
manages component lifecycle. useContext - enables sharing of state between nested component with-
out passing props through all of them

The hook API has been taken over by many other React packages and
dependencies, and now they offer similar functionality.

3.2.3 Choosing the Right Framework

Both of the above-mentioned frameworks can be used to build a PWA. Both
support rich client-side functionality and are very efficient both in terms of
development time and runtime performance. Angular is more complicated
than React, so the learning time is longer. Typescript has to be used with
Angular, but it is optional in the case of React.

In the upcoming implementation, I decided to use React in combination
with TypeScript because of these (partly biased) reasons:. I have worked with both of these frameworks and React suited me better

thanks to the broader possibilities when choosing particular libraries and
approaches to certain parts of applications. Pingl (the PWA I will implement) uses React in other parts of the plat-
form, so using the same framework make sense in terms of code sharing
and reusability. Also, all these parts of the platform are simultaneously
developed, so switching between projects is easier if they use the same
framework..Other team members have no experience with Angular, so choosing
Angular can have a negative impact on future development

26

................................... 3.3. Google Workbox

3.3 Google Workbox

Google Workbox is a set of libraries, that can be used to easily implement
functionality in Service Workers. These libraries are distributed either as .js
files through CDN, or as node modules and javascript packages and can be
bundled directly into the Service Workers.

Basically, these libraries allow developers to implement in a few lines of
code many of PWA features, such as routing, caching strategies or background
synchronization.

3.3.1 Routing & Caching

Using registerRoute function, a route (i.e. URL of a request) can be easily
mapped to a handler. The route can be distinguished by its full name, a
regular expression or by a callback function. The handler can intercept the
request and use some of the cache strategies, or can perform any other tasks
and return a Response wrapped in a Promise.

Bellow, there is an example, that opens a cache called "images" and saves
there last 200 images for 30 days. Then, all images are returned from this
cache using CacheFirst strategy:

workbox.routing.registerRoute(
/\.(?:png|gif|jpg|jpeg|svg)$/,
new workbox.strategies.CacheFirst({

cacheName: ’images’,
plugins: [

new workbox.expiration.Plugin({
maxEntries: 200,
maxAgeSeconds: 30 * 24 * 60 * 60, // 30 Days

}),
],

})
)

It is important to remember, that some requests reaches third-party sources
(other origins). These cross-origin requests are opaque to the JavaScript,
which means, that some details of the responses are not readable. Especially in
Service Workers, it is not possible to check status codes of the responses. This
means, that even if an error response comes from the server, it could be saved
in the cache and our app will continue to receive this error response. Because
of that, by default, Workbox disables CacheFirst strategy for these cross-
origin requests and allows only NetworkFirst and StaleWhileRevalidate
strategies, which ensure frequent updates of the cache.

27

3. Technologies for PWA Development...........................
3.3.2 Precaching

Very important feature is preloading of resources. This is typically done by
function precacheAndRoute. It accepts a list of objects containing URL of
the resource and its revision number:

workbox.precaching.precacheAndRoute([
{url: ’/index.html’, revision: ’383676...233’ },

])

This list of resources is often generated automatically by Workbox CLI
interface or WorkboxBuild Node module and is injected into the Service
Worker file using workboxBuild.injectManifest() function.

3.4 Testing with Lighthouse

To test if the website has implemented PWA functionality correctly, Light-
house tool can be used [33]. This tool can be run from the command line, or
it is available in Google Chrome browser DevTools. It audits several aspects
of the website, such as performance, SEO (Search Engine Optimisation), best
practices, accessibility, and PWA aspects. In the case of PWAs, it namely
tests, if the web page has registered a Service Worker, works offline or has an
optimized view for different viewpoint sizes.

28

Chapter 4
Pingl.app - PWA

To demonstrate PWA functionality, I will develop a part of Pingl application.
Pingl is a product of the same-named company Pingl s.r.o., which I co-founded
in February, 2019.

Pingl.app description: Thanks to Pingl, gastro business cus-
tomers can order and pay without waiting, whether they want to
order a takeaway for a certain time or they are already sitting at a
restaurant table.
For restaurants, Pingl means a new efficient sales channel - Pingl
will bring new customers through takeaway orders while reducing
service demands. [34]

4.1 Project Scope

One of the key parts of the Pingl platform is a customer-facing app.
This part can be divided into two sections:..1. Choosing the restaurant to eat - the current design is not sufficient
for current needs. It has to be changed to better showcase restaurants,
which users can visit...2. Choosing a meal and placing the order - this part of the app is
already implemented and has a huge logic, which makes it hard to realize
in this project. I will omit this part of the app in this project.

Currently, the customer-facing part of the application is a website built
in React. It lacks any PWA functionality, and it is in question if the app
should be implemented as a PWA or as a native app. This work aims to test
the first option - implement a PWA and conclude whether this approach was
efficient, and the rest of the app should also be converted into a PWA.

Out of scope functionality:

This project will be limited to the PWA itself, so only a frontend side will be
implemented. If any requirement for the backend side will occur, it will be
implemented by other persons in the Pingl team.

29

4. Pingl.app - PWA
Meal ordering and payment are not implemented in this project. The main

focus is on the PWA functionality in a narrow part of the application.

4.2 Requirements

4.2.1 Functional Requirements

FR_01: As a customer, I want to see a list of all available restaurants, so I
have an overview of all of the possibilities to eat.

FR_02: As a customer, I want to sort restaurants by my preferences, which
include distance or type of served food, so I can easily choose a
place to eat.

FR_03: A a customer, I want to see restaurant on a map, so I know, where
they are located.

FR_04: As a customer, I want to see restaurants offering special discounts.

FR_05: As a customer, I want to see specific meals around me, so I can
decide by available meals, not only by restaurant names.

FR_06: As a customer, I want to be able to scan QR codes on tables in
restaurants, even if I don’t have a dedicated scanning app.

FR_07: As a customer, I want to login to save my preferences, so I will
have a personalized experience while browsing the app.

FR_08: As a customer, I want to use the app in multiple languages, mainly
in Czech and English.

FR_09: As a customer, I want to see a list of restaurants even when I am
offline.

4.2.2 Non-Functional Requirements

NFR_01: The app is compatible with modern browsers, including both
desktop and mobile platforms.

NFR_02: The app is responsive and adapts to different screen sizes, ranging
from 4-inch mobile phones to large desktop monitors.

NFR_03: Users can add the app to their home screens.

NFR_04: The app is written in React to match other parts of the platform.

NFR_05: The app uses the current backend, which provides a GraphQL
API.

NFR_06: The app design is in accordance with Pingl design guidelines -
the logo and brand colors are correctly used.

30

Chapter 5
Pingl.app - User Interface

5.1 Screens

All screens that will be in the app are listed bellow:. Landing Screen - to browse a list of meals and restaurants
Wireframe: Pingl.app Mobile Wireframes - part 1 (a). List of Restaurants - to see and explore restaurants by categories
Wireframe: Pingl.app Mobile Wireframes - part 1 (b).Map View - to select a restaurant from a map
Wireframe: Pingl.app Mobile Wireframes - part 2 (c).QR Code Scanner - to scan QR code when the user is in a restaurant
Wireframe: Pingl.app Mobile Wireframes - part 2 (d).User Profile - to see basic information about user, to enable notifications

5.2 Wireframes

To demonstrate the app design and functionality, I have created a few wire-
frames. A wireframe is a bare-bones depiction of all the components of a page
and how they fit together.[35] These wireframes are designed in Sketch, which
allows rapid prototyping directly to the mobile phone. Since the majority
of users will use mobile phones to access the app, I have used a mobile-first
approach. For the desktop version, the intention was to keep as many elements
as possible same with the mobile version, to minimize changes between both
versions.

I have used a combination of high fidelity prototyping in grayscale colors
with some more concrete design elements, such as icons and shadows. The
result wireframes and clickable prototype can be considered almost as the
final design without colors. Lack of colors and images in these wireframes
allows me and beta testers to focus more on the layout and action flow.

31

5. Pingl.app - User Interface

(a) : Landing Screen (b) : List of Restaurants

Figure 5.1: Pingl.app Mobile Wireframes - part 1

32

..................................... 5.2. Wireframes

(c) : Map View (d) : QR Code Scanner

Figure 5.1: Pingl.app Mobile Wireframes - part 2

33

5. Pingl.app - User Interface

Figure 5.2: Pingl.app Desktop Wireframe

34

Chapter 6
Pingl.app - Implementation

I have developed a production-ready part of Pingl.app as a PWA. The code of
implemented prototype is available in the enclosed CD or in a GIT repository:
https://gitlab.com/vojtech.rychnovsky/pingl-marketplace.

The project consists of:. a setup of React project based on TypeScript, with an emphasis on code
quality tools, and with CI/CD pipelines - Project Setup (section 6.2). a GraphQL client capable of offline work - GraphQL API Client (subsec-
tion 6.3.3). a set of responsive pages and components allowing users to see restaurants
in a list or on a map, filter them by categories, search by their name
or to select them by scanning a QR code - Implemented Functionality
(section 6.4). a PWA, that is reliable (works offline), fast (uses advanced caching) and
engaging (has push notification) - PWA Features (section 6.5). testing - Testing (section 6.6)

Compared with the designed user interface, page "Your orders" has not
been implemented. The reason is, that as placing of new orders is not in the
scope of this projects, this page would be always empty.

Steps to run the React project locally:..1. npm (Node Package Manager) has to be installed on the device..2. open a command line window or a terminal window in the project root
folder and run these commands:. npm install. npm run start..3. open http://localhost:3000 in any browser, the website is ready to
be viewed there

35

https://gitlab.com/vojtech.rychnovsky/pingl-marketplace
http://localhost:3000

6. Pingl.app - Implementation...............................
6.1 Deployment Architecture

6.1.1 Backend

The current Pingl backend in a development environment is used. During
the project, there were raised some new requirements for the backend, such
as a new query for sending test push notifications to user’s devices. These
changes on backend were implemented by other members of Pingl team.

6.1.2 Frontend

The frontend part consists of one PWA client app. As some parts of the PWA
have to be tested on a real domain with HTTPS connection, I have prepared
a separate domain for this app. As a hosting, I have chosen Firebase Hosting
for the following reasons: the PWA itself is compiled to static files and can
run here in a free tier with no costs, and also other Firebase products are used
in this project, so I wanted to keep the project unified in one environment.
The app is deployed here: https://thesis.web-rychnovsky.com/.

6.2 Project Setup

6.2.1 Used Frameworks and Technologies

The project uses React as the main framework. The base configuration comes
from the Create React App1 template. Static type checking is provided by
TypeScript. I have paid attention to type all functions and objects correctly
to fully benefit from TypeScript type checking.

As mentioned in the React analysis, it is necessary to add other libraries
for particular parts of the functionality. These libraries come as dependencies
from NPM (Node Package Manager) repository. After installing, they are listed
in package.json file in the project root. As some of these dependencies are
written in JavaScript, this requires additional libraries with TypeScript types
definitions. Below are listed the most important and interesting ones:.Routing - As a Router, BrowserRouter from react-router-dom pack-

age is used. This type of router distinguishes routes based on the page
URL (address in the address bar in the browser) and, based on the URL,
renders a correct component..Global State - The global state of the app is managed using react-redux.
This state is persisted in the LocalStorage in the browser. More in Redux
Store (subsection 6.3.2)

1Create React App: https://github.com/facebook/create-react-app,
(accessed: Jan 02, 2020)

36

https://thesis.web-rychnovsky.com/
https://github.com/facebook/create-react-app

.................................... 6.2. Project Setup

.Async tasks - For more complex asynchronous tasks in the app, redux-thunk
is used. In thunks, more redux actions and GraphQL API calls can be
chained to build the app logic. More in Redux Store (subsection 6.3.2).API - To connect to the remote GraphQL (gql) server, apollo client is
used. More in GraphQL API Client (subsection 6.3.3).Configuration - The app configuration, such as backend URLs, depends
on the environment. These environment variables are listed in .env files
and are loaded by env-cmd package. To ensure that all of these variables
are presented in the .env file, they are wrapped into a config object,
which checks for missing variables during compile time.. Styling - styled-components defines the base HTML elements with their
corresponding styles. Some components, such as icons and inputs fields,
are used from @material/core framework and are customized to match
the design of the app.. Forms - formik together with yup validation is used to manage forms
submission and validation.Testing - for running tests, Jest package is used. More in Testing
(section 6.6)

6.2.2 Code Quality Tools

To ensure a high standard of code quality through the app, static code analysis
is used. These tools, together with TypeScript, check for issues and problems
in the code and minimize runtime errors.. ESLint - checks for problems in JavaScript and TypeSript code. StyleLint - checks for problems in CSS code in StyledComponents.Prettier - ensures uniform code formatting across the whole app

All these tools are configured to be run as git commit hooks. I have configured
git hooks by Husky package. Using this tool, the hooks can be defined in
package.json file and can be shared with the development team. This
process ensures that every commit is checked that it follows all these rules.
The rules are, if it is possible, auto-fixed.

6.2.3 CI/CD Pipelines

For deployment and testing, automated pipelines on GitLab are used. They
run on every push to dev and master branches with following stages:.Build - installs dependencies and builds the app.Test - runs all tests defined in the app.Deploy - deploys compiled files to Firebase Hosting (only master branch)

37

6. Pingl.app - Implementation...............................
6.2.4 Folder Structure. src/components/ - contains simple reusable components. src/containers/ - contains more complex components with side-effects. src/constants/ - contains route names and server error codes. src/data/ - contains GraphQL queries and Redux Store: actions, selec-
tor, reducers and thunks. src/pages/ - contains individual components for every page. src/static/ - contains static files such as images and translations. src/styles/ - contains global app styles, animations, colors and typog-
raphy. src/utils/ - contains small utility functions and helpers, for example
for distance meassuring, notifications or Local Storage. src/@types/ - contains types declarations. serviceWorker/ - contains Service Worker file and build script for its
compilation. public/ - contains the base index.html file, PWA manifest and favicons

6.3 Frontend Architecture

6.3.1 Components

Each component is located in its own folder containing two files. The
component logic is placed in index.tsx file, the styles are separated in
styled.ts file. Every component is written as a Functional Component
typed as React.FC with a heavy usage of React Hooks. Except of standard
React Hooks (such as useState, useEffect, useMemo), they are used, for
example, to get an instance of translator function, to access the app history,
to dispatch Redux actions or to select information from the Redux Store.

The main App component contains a switch between individual pages.
Each page is wrapped in AppRoute component responsible for protection of
private pages. The entire app is wrapped in an ErrorBoundary component,
which catches errors in the underlying component tree. If an error occurs,
a fallback component is shown - there is an option to reload the page or to
clear the Local Storage. By these two buttons, the user can help the app
to recover from many errors.

38

.................................6.3. Frontend Architecture

Layout Components

To facilitate creation of new pages (routes) with unified layout, there are
three base layout components. They can be used by any page in the app,
all of them are fully responsive and offer further customization by passing
different props:.PageLayout - a basic page with header and container with a maximum

width, used in the main app screen.HalfPageLayout - a page with a big image on the left and a column
with a content on the right. On mobiles, the image is hidden, and the
right column is full-width. This layout is used in the login page.TwoColumnPageLayout - a page, which has two columns, one of
them becomes a bottom bar on mobiles and can be expanded by swiping
up. This layout is used in the map and scanner page.

6.3.2 Redux Store

The Redux Store is divided into four sub-stores based on their responsibility:.App - stores location of the device together with a timestamp of this
location.MenuItems - stores an array of specially-offered menu items from each
restaurant. These arrays are stored in an object indexed by ID of the
restaurant.Restaurant - stores an array of all available restaurants and all available
tags (categories). Also, information about selected restaurant, meals and
discount is kept here..User - stores information about the current user

Each of them contains a constants file defining allowed action types,
actions file defining actions, which can be dispatched in the components,
and reducers modifying the store based on the action types. Store selectors
are also defined in their own file, they simply retrieve values from the store
and sometimes make data transformation.

Asynchronous actions are handled by Redux-thunk middleware. The
most common use-case in this app is to try to fetch data from the API, to
dispatch an action to save the data to the store and to handle any possible
error. To ensure correct typing of responses returned from the thunks to
the component, custom hook useReduxDispatch is used. This hook returns
dispatch function, that is able to run a thunk and return its return value
correctly. This process is illustrated by diagram Asynchronous data fetching
with Redux thunks and GraphQL API (Figure 6.1).

39

6. Pingl.app - Implementation...............................

Figure 6.1: Asynchronous data fetching with Redux thunks and GraphQL API

6.3.3 GraphQL API Client

Each of the individual Redux Stores also contains GraphQL queries, mutations
and fragments related to its scope. From these queries, typescript types are
generated using Apollo client (sripts npm run schema:fetch & npm run
schema:generate). By this process, all these queries are validated against
current application server.

The query and generated types are then combined together to form a
fully-typed API method, starting with "request" as a naming convention.
There is a generic api function, which makes this process very easy - only
return type and type of variables has to be passed. This is an example, how
this can be done for sign in request. As a result, the function requestSignIn
now returns Promise, that resolves to an object of the same type as the return
type of gql mutation:

import { signIn, signInVariables } from ’./gql/__generated__/signIn’
const SIGN_IN = gql‘

mutation signIn($username: String!, $password: String) {
signIn(username: $username, password: $password) {

// ... returned attributes
}

}
‘
export const requestSignIn = async (variables: signInVariables) => {

return (
await gqlApi.apiMutateRequest<signIn, signInVariables>(

SIGN_IN,
variables

)
).signIn

}

Apollo Client Middlewares

Internally, these API calls use Apollo Client to form and send HTTP
requests. Each request is process through several middlewares (also called

40

.................................6.3. Frontend Architecture

links). The order and composition of these links is illustrated in diagram
Composition of Apollo Links (Figure 6.2). Each link is responsible for handling
different task:.AuthLink - adds authentication token to the header of each request.HttpLink - connects to the app server using HTTP requests (for muta-

tions and queries).WebSocketLink - connects to the server using web sockets (for sub-
scriptions).RetryLink - retries the request N-times in case of network error.QueueLink - if the client is offline, saves the request in a queue and
sends it when the client is online. split - a basic "if" condition, can split chain of links to two branches

These links combined can be used to send requests while offline. Based on
the configuration of each request, it can wait until the client is online (e.g.
an unimportant request such as fetching restaurants on the homepage), or
can return an error (e.g. an important request such as sign in)

Figure 6.2: Composition of Apollo Links

41

6. Pingl.app - Implementation...............................
6.4 Implemented Functionality

The implemented features correspond to the functional requirements defined
in Functional Requirements (subsection 4.2.1). Generally, the app offers a
nice, intuitive and responsive interface for restaurant selection.

User Authentication

The app features standard login and registration functionality. The user is au-
thenticated by email and password, these credentials are validated on the app
server, and if they are correct, an access_token with limited expiration is
returned. This token is saved in LocalStorage and then is send as a Bearer
token in the Authentication header with every request to the server.

The app routes are split to private a public routes. All of them are wrapped
into AppRoute component. If the route is marked as private, the page is
rendered under two conditions:. access_token is available in local storage. user object is saved in redux store

At the same time, the access_token is validated against the application
server. If the token is valid, it is refreshed and new user data are fetched.
Otherwise, the user is logged out and redirected to the homepage.

The login and registration forms are split between two separate pages.
There is a link to the registration form in any page header. If the user
has ever been logged in, the link directs to the login form instead of to the
registration form.

Logged in users can access a profile page. There they can see their name,
email, and available payment methods (these methods are filled after the user
places an order in the real Pingl.app).

There is a switch between available languages. Currently, the app supports
Czech and English using react-i18n package. The translations are separated
from other code in JSON files, so it is straightforward to add new languages
or to edit these strings by external translators. The default language is set to
browser default language with a fallback to English.

Users can also enable location services there. The app asks for permission,
and if it is granted, the user location is saved to redux store. This location is
then in the next 24 hours used to sort restaurants by distance.

The last setting is related to Notifications. The user has an option to
enable them and to send a test notification. If the user has denied permission
to send notifications, a prompt to enable them in browser settings will appear.
The technical aspects of how are notifications implemented, are discussed in
Push Notifications (subsection 6.5.2).

There is also a logout button that deletes access_token from the LocalStorage
and resets redux store, then the user is redirected to the main page.

42

...............................6.4. Implemented Functionality

Restaurant & Meals Lists

Two layouts were developed to showcase restaurants and meals. There is
a basic grid component, which can be customized by passing a number
of columns for mobile and for desktop view. The second component is a
horizontal carousel built on top of react-slick library. Similarly, the number
of columns can be specified by props. Users can go to the next slides by
swiping on mobile or by clicking on arrows on desktop.

These two components, grid and carousel, accept an array of restaurants
or meals thumbnail, that makes them easy to reuse in any part of the app.
Moreover, in the future, if there will be a need to show a different list of
restaurants, for example, sorted by customer rating, this can be done very
quickly by reusing these components. Now they are used to present a ran-
domly selected restaurant, a list of all restaurants, a list of nearby places, as
well as a list of special meal offers from all nearby places.

To show details of meals or restaurants in the grids or carousels, thumbnail
components are used. There is visible a name, an image, tags, conditionally a
distance. Using only one component to show a restaurant or a meal in the app
ensures consistency of the design and the code reusability. These components
are ready in three sizes. The thumbnail components also encapsulate the logic
of selecting a restaurant. If the user clicks a thumbnail with "to table" orders,
a dialog window with input for table number appears. Otherwise, the user
goes directly to the restaurant detail. On this restaurant detail page, there
are visible the selected data - restaurant, table, and meal. This page is there
only for testing purposes and will be replaced later after merging with the
other part of the Pingl app responsible for placing orders. All selected data
there are saved in the store, so the connection to restaurant detail, where a
meal will be optionally selected, is straightforward.

Usage of these components is illustrated by image Sections of the Main
Page (Figure 6.3).

43

6. Pingl.app - Implementation...............................

Figure 6.3: Sections of the Main Page

QR Scanner

This component uses react-qr-reader package to handle image processing,
then the scanned data are passed to a parsing function. There are currently
3 types of QR codes illustrated by Possible types of QR codes (Figure 6.4):. table - containing table ID and a discount code

https://example.com?id=xxxx&discount=yyy.marketing - containing specification of the marketing source (these
values are not saved, they are used only for web traffic analysis)
https://example.com?referral=name&type=takeaway_promo

44

https://example.com?id=xxxx&discount=yyy
https://example.com?referral=name&type=takeaway_promo

...............................6.4. Implemented Functionality

. restaurant - containing a short name of the venue
https://example.com/yummeee

(a) : Type "Table" (b) : Type "Marketing" (c) : Type "Restaurant"

Figure 6.4: Possible types of QR codes

Values from these codes are parsed and validated, then saved in the redux
store. In case the user opens these URLs directly in a browser, the app
handles the parameters also in the main App component and performs the
same actions. It means that the codes can be scanned with third-party
scanners, including native camera apps, with no difference in functionality.

If the user is offline, the QR code is validated against cached restaurants
data. If the code is found invalid, a message that Internet connection is
needed, will appear. This can happen, for example, if a new QR code was
placed on a table today, but the cached data are older and does not contain
this particular table. In this case, a server validation is needed. But for the
vast majority of cases, codes can be scanned offline.

On the side of the scanner page, there is also a list of restaurants filtered
to show only places offering table ordering, so in a case users have problems
with using the scanner, they can select the restaurant by clicking on it.

Map

The map page shows the locations of all restaurants. Google-maps-react
package is used to show a fully functional Google map component. There
is a custom "locate me" button to get the current location from Navigator.
Restaurants are placed on the map as pins with their images. In the middle,
there is a circle showing a radius from the map center with a distance label,
so it is easy to see the distance between restaurants. There is a pulsing CSS
animation on the center mark, and the circle radius is animated as the map
is dragged.

If the user is offline and the map cannot be loaded, a message about this
issue will appear. Since the map doesn’t show only one location, but many of
them, static preloaded image of the map doesn’t make sense.

Next to the map, the list of nearby restaurants is grouped into two parts -
one for the places visible in the map, the other to show places outside of the

45

https://example.com/yummeee

6. Pingl.app - Implementation...............................
map borders. This list is sorted from the closest places to the map center to
the furthest. As the map moves, this sorting and grouping are updated.

6.5 PWA Features

The implemented website is a Progressive Web App. It meets the prerequisites
for installation on the home screen. Users are asked to install the app by the
browser, or have an option to install the app in various places in the app -
for example, if the browser can install the app, a banner between carousels
with restaurants on the main screen will appear.

The app has also all the necessary visual elements to display on mobile
and desktop platforms correctly. For example, iOS splash screens (loading
screens) can be generated using pwa-assets-generator package (npm run
splash:generate), the resulting images (more than 40) are placed in the
/public folder.

In this section, I will cover some of the PWA functionality in more detail.

6.5.1 Service Workers

Create React App has its own service worker based on Google Workbox, a
framework for building service workers2. Currently, there are no possibilities
for configuring this default service worker in CRA project, so I had to create
another build script, which basically creates a new file and replaces the old
file. The service worker is compiled from TypeScript to JavaScript using
Babel, then Workbox is used to inject static files urls, which will be cached
by the service worker. This build process can be run by NPM scripts and is
part of deployment pipelines.

The main task for this service worker is to (pre)cache files and assets of
the app using different caching strategies3:. index.html and JS bundle - all the app static assets are injected

to this worker during build process with coresponding revision hashes.
These files are precached using Workbox precacheAndRoute method. As
this app is a SPA (single page app), the application shell (index.html)
is used by multiple app routes, so all routes are mapped to this one
index.html file.. fonts - cached using cache-first strategy. restaurant images - cached using stale-while-revalidate strategy.meals images - cached using stale-while-revalidate strategy. other images - cached using cache-first strategy

2Detailed description of how Workbox works, can be found in Google Workbox (sec-
tion 3.3)

3Different caching strategies has been described in Caching Strategies (subsection 2.3.1)

46

.................................... 6.5. PWA Features

. other .js and .css files - cached using stale-while-revalidate strategy

The process of distribution of updates of the app and service worker is
simplified into these steps:..1. with a new app build, a new service worker is generated with a different

revision number for each of the resources..2. when the user opens the app, this service worker file is downloaded,
compared with the old one and as it is different, it is installed and page
reload is forced..3. because revision numbers of the resources have changed, they are removed
from the cache and downloaded again..4. finally, the app is ready to be used, with full offline support

There is also a second service worker, responsible for receiving push mes-
sages, that is registered by Firebase Cloud Messaging.

6.5.2 Push Notifications

Push notifications are powered by Firebase Cloud Messaging (FCM). The
subscription process uses firebase/messaging package. After the firebase
messaging is initialized using API keys, the whole process of establishing the
subscription is abstracted under one function - getToken(). This function is
responsible for asking for the permission, for registering a new service worker
and for starting the subscription. It also saves the subscription details on
the FCM server and simply returns a FCM token. This token is then used
as an "address" of this device. Then a request to Pingl application server is
send to save this token, paired with current user id. As one user can have
multiple devices, an unique device ID is generated and it is saved together
with this token. From this moment, the application backend can send push
notifications to this device.

To receive the messages, two handlers are used - one in the service worker
receives the messages while the app is in background, the second handles
the push messages while the tab with the app is visible and focused. In
these handlers, when the message is received, push notifications are shown.
Currently, 3 push notification types are supported (this type comes in a
payload of the message):.TEST - a test notification, it can be triggered from user profile.ORDER_READY - a notification when an order is done and ready

for pickup.NEW_RESTAURANT - a notification after a new venue is added
to Pingl (not implemented on backend yet)

47

6. Pingl.app - Implementation...............................
This implementation will be probably changed in the future. Now the title
and body of the notification is hard-coded in the frontend based on the
message type, which makes it hard to implement new message types or to
add personalization. Better approach would be to receive these texts for the
notifications directly from the backend.

6.5.3 Offline Support

The service worker caches static JavaScript and HTML files, Google Fonts
and images of restaurants in CacheStorage. The state of the app is persisted
in local storage, so the app is fully accessible even without Internet connection.
Users can open the app and see the list of restaurants while being offline.
However, behaviour of certain parts can differ to the online state:

. List of restaurants & meals - restaurant data may not be completely
up to date, but the list is visible even with restaurant images

.QR Scanner - if the client is online, the codes are validated against
the app server, however, during offline state, they are validated against
cached data in redux store

.Map - map itself is replaced by an offline message, the list of restaurants
works

.Profile - button for sending test notifications does not work

.User registration - works only online

As the user navigates through the app, many HTTP request are triggered,
such as fetching of all restaurants, fetching of user data, or verification of
user credentials. As it was described in section Apollo Client Middlewares
(subsection 6.3.3), some requests are postponed until the client is online. This
means, that the user will see old data from cache, but once the Internet
connection is restored, the data will be updated. Other requests, such as
submission of sign in form, will skip this queue and will be send immediately,
with 3 repeats in case of error response.

These two techniques are used to overcome temporary connection issues
and to ensure, that the app is usable without the Internet connection.

6.6 Testing

This section refers to the "technical" aspects of testing. Testing of user
interface and user experience is describe in a dedicated part of this project:
Pingl.app - User Testing (chapter 7).

48

....................................... 6.6. Testing

6.6.1 Testing with Lighthouse

As it was mentioned in previous sections (Testing with Lighthouse (sec-
tion 3.4)), the Lighthouse Chrome extension is very valuable source of infor-
mation about the page performance and possible issues. This tool helped
with fixing various issues related to accessibility, SEO (Search Engine Opti-
mization) and best practises, such as missing link labels or small buttons for
mobile devices.

The only area in this test with insufficient results is performance - 20/100
rating means that that are several problems regarding page load time, image
compression or precaching of images. These issues can be caused by preloading
high amount of resources in service workers for offline use, but this has to be
further investigated, which is done in Performance Testing (subsection 6.6.3).

6.6.2 Unit Testing

Certain parts of the code are unit tested. These tests are based on Jest
testing framework. They can be run locally by script npm run test, and
they are part of CI/CD pipelines. The tests are divided into 10 test suites
based on the tested files (one test suite for one file), together they form 35
tests. Namely, the tested parts of the apps are:. Location Utils - tests functions for measuring the distance between

two places and restaurant sorting.Notification Utils - tests functions for generating device ID.QR Code Utils - tests parsing data from URL, that is scanned from
QR codes.Time Utils - tests calculation of the next close time of a restaurant.Redux Store - All reducers are tested if they return the right result for
a passed action. There are also tests for selectors and thunks.

These functions were chosen for the testing because they form the core
functionality of the app. Additionally, from my experience, these are the
functions that cause a lot of bugs and issues and, at the same time, can be
very easily tested.

6.6.3 Performance Testing

The implemented PWA was also tested in terms of performance. There are
two main areas users are concerned about - the initial load time and the
smoothness of application.

App Smoothness

In this app, there are no heavy computations or complex animations, so the
slowest parts of the app are HTTP requests to the app server. The average
server response time is under 250ms, so even this is not an issue for the user.

49

6. Pingl.app - Implementation...............................
Page Load Time

The more important area is the load time. The PWA features advanced
caching mechanisms, so it is important to test, whether this caching affects
the resulted experience.

The tests were conducted in a consistent environment: desktop Google
Chrome browser was used, with an emulated "fast 3G" connection. The first
load time was measured with disabled browser cache and with cleared other
browser data (such as service workers, local storage). This is how the app
would feel like for a new user. The second load time was measured with
enabled browser cache and with the content of local storage and other parts
untouched after the first load. This simulates a returning user.

For comparison, the app was tested with and without the service workers.
Each test was run 5 times and times were averaged.

first load second load improvement
no SW load time [s] 3,51 1,71 51 %

finish time [s] 13,99 5,81 58 %
with SW load time [s] 3,54 1,00 72 %

finish time [s] 13,10 2,68 80 %

Table 6.1: Results of load time testing

These results are also illustrated in a chart Page Load Times (Figure 6.5).

Figure 6.5: Page Load Times

The performed tests show that there is no difference in the load time of
the first visit between the versions with and without the the service worker.

However, for the second visit, both versions shows a significant improve-
ment.

50

....................................... 6.6. Testing

In the version without the service worker, the images are cached in the
browser cache and the app loads 58% faster. With the service worker enabled,
even more assets are cached and there is another improvement - the page
loads 80% faster. This clearly shows that service worker brings another
acceleration of the page load.

If the user leaves this testing environment and uses full Internet connection,
the average load time is around 1 second.

51

52

Chapter 7
Pingl.app - User Testing

The resulting app has been user-tested. In particular, usability tests has been
performed with a group of 5 participants in an informal environment.

7.1 Preparation

7.1.1 Target Group

Participants of this test have been chosen in accordance with the target
audience of Pingl app. These users should be in age of 15 - 50 and should
use mobile phones on a daily basis.

7.1.2 Environment

The tests have been run in an informal environment over online video calls or
in person. Each of the participants used their own smartphone, because this
is exactly how they would use the app in the real world. They were asked
to fulfill simple tasks in the app, while their thoughts and impressions were
noted down.

7.1.3 Pre-Test Screening

Before running the test, each participant had to fill a screener to prove
his/her qualification for the test and to collect some demographic data. The
results are shown in table Results of the survey before user testing (Table 7.1).
Number in a separated column represents quantity of each response.

Question Answers
gender male 4x female 1x
age 15-25 4x 25-35 0x 35-50 1x
restaurant visits per week 0-1 2x 2-3 2x 4+ 1x
have ever ordered food online Yes 4x No 1x

Table 7.1: Results of the survey before user testing

53

7. Pingl.app - User Testing................................
7.2 Test Cases

Each of the participants was asked to perform one by one these actions:

CASE_01: Open the website and add it to the home screen of your device.

CASE_02: Create a new account and check your profile, that you are
correctly logged in.

CASE_03: Change the language of the app.

CASE_04: Tomorrow you will go to Prague. Check, if there are any places,
where you can eat. Find your favourite.

CASE_05: Enable location services and find the nearest restaurant to your
location and select it.

CASE_06: Scan QR code on your table.

CASE_07: Check, whether the restaurant called "Yumeee" offers burgers.

CASE_08: Logout from the app.

CASE_09: Leave the app and disable Internet connection. Go back and
try to navigate through the app. Try to reload it. Does it work
offline?

7.3 Test Report

Participant 1

Information about the participant: Co-Founder of Pingl, 23 years old,
with a strong technical background. Testing device: iPhone 7.
Found issues: After registration and after log in, he expected to see a

success response. When he opened the page with the map, he expected to
be asked for his location immediately, so the map would be centered to his
position. Also, the bottom bar (in the map page and scanner page), when it
is opened, should be closable by clicking on its top edge. When he had the
app installed, the QR scanner was not working.
Post-test discussion: Generally, he likes the app. As a comparisons to

the old Pingl interface, he finds attractive multiple carousels and lists with
the restaurants.

Participant 2

Information about the participant: Co-Founder of Pingl, 21 years old,
with a strong technical background. Testing device: Samsung Galaxy 9 Plus.
Found issues: When he opened the app, the browser proposed installation

on the home screen, he confirmed it, but nothing happened. He was not sure

54

..................................... 7.3. Test Report

if that was only a temporary issue, but the in-app banner with a button to
install the app worked right after with no problems.
Post-test discussion: He loves the experience from the app. He thinks

there are many improvements in comparison to the current layout and func-
tionality in the Pingl app. He considers offline support as a very handful
feature.

Participant 3

Information about the participant: 17 years old student, with experi-
ences in design and online marketing. Testing device: iPhone 6.
Found issues: As the testing phone has a smaller screen, some elements

of the UI seem to be bigger than expected. In particular, the homepage has
a lot of white space in the top section, and restaurant thumbnails have too
big titles and some of them are overfloating their containers. Also, there is
an arrow icon on the top edge of the bottom bar, and it should change its
direction, when the bottom bar is expanded. In addition, the full text search
should also filter the restaurants by city or by address.
Post-test discussion: He finds the app quite nice, even though there are

some details, that would need further improvements. Especially to tweak
padding of some elements and their sizes on all screen sizes.

Participant 4

Information about the participant: 20 years old student without
any specific technical knowledge. She is an ordinary daily smartphone user.
Testing device: iPhone 8.
Found issues: For her, it was hard to find a button to save the PWA

on the homescreen. Even though she knew, what a PWA is, Safari browser
is not very user friendly in this area and this task was not manageable for
her. Nevertheless she finished every task without much problems. During
using the map, she thought that the center mark is her location and she was
surprised, that it moved as she dragged the map.
Post-test discussion: In general, she considers the app to be intuitive

and simple.

Participant 5

Information about the participant: 55 years old business man, daily
visitor of restaurants, interested in the app as he might use it to speed up his
lunch routine. Testing device: Huawei P30.
Found issues: When he was in the map, at first, he couldn’t find the

button to center the map to his location, but then he realized, how it works.
He is satisfied with large buttons and touchable elements.
Post-test discussion: He likes that the app can be saved on the home-

sceen and is quickly accessible.

55

7. Pingl.app - User Testing................................
7.4 Results

This usability testing brought positive results. In general, participants found
the app to be intuitive and user friendly and managed to finished all critical
test cases. In the future, this user testing should be done on a wider audience
and also should be done periodically, as some issues will be fixed and a new
functionality will be added.

However, there are some problems, that were either found by more users
or have a great impact on the app functionality. These issues have to be
addressed and fixed:. Investigate issues with the QR scanner, when the app is installed on iOS

devices. Add a success response after user is logged in. Test the layout on very small phones and fix minor styling problems. Improve bottom bar to be closable by click and to change direction of
the arrow icon

56

Chapter 8
Conclusion

Progressive Web Apps offer enhanced functionality over classic web sites and
can stand as a second option next to native apps when it comes to a decision,
whichever of them to implement. A current company website or web app
can easily be turned into a PWA and can offer at least some of the possible
functionality. The main drawback of PWAs is the inconsistency of support
among browsers and platforms. Also, some users can open the PWA using
an old, unsupported browser, so using progressive enhancement technique is
essential. The PWA should not limit its audience by not offering classic web
experience to these users.

Pingl web app is an unambiguous example, where PWAmakes sense. During
this project, a fully functional PWA has been developed. Its functionality
covers all the required functional requirements, mainly focusing on the part
of the app, where users select a restaurant, where they want to order meals.
This PWA can be installed on a variety of devices thanks to its responsive
design. The resulting app is intuitive, which was proven by user testing.
Furthermore, the app itself is unit tested. It was shown that the current
backend and API is suitable to be used with this new PWA. As a result this
project is a production-ready part of Pingl.app. To emphasize this, some
parts of the functionality, such as notifications, map, location services, and
basic caching powered by service workers, have already been implemented in
the production Pingl application and is used by real customers.

In terms of the future of this work, the next step is to merge this project
into production Pingl.app and replace current insufficient restaurant selection
flow. Thereafter, the resulting app should be more user-tested, improved and
released to all customers.

57

58

Bibliography

[1] Alex Russell. Progressive Web Apps: Escaping Tabs Without Losing
Our Soul. url: https://infrequently.org/2015/06/progressive-
apps-escaping-tabs-without-losing-our-soul/. (posted: June 15,
2015, accessed Nov 9, 2019).

[2] Apple Inc. App Store Review Guidelines. url: https://developer.
apple.com/app-store/review/guidelines/#minimum-functionality.
(accessed: Dec 8, 2019).

[3] StatCounter. Desktop vs Mobile vs Tablet Market Share Worldwide. url:
https://gs.statcounter.com/platform-market-share/desktop-
mobile- tablet/worldwide/#monthly- 200901- 201911. (accessed:
Nov 24, 2019).

[4] Tal Ater. Building Progressive Web Apps: Bringing the Power of Native
to the Browser. O’Reilly Media, 2017. isbn: 978-1-491-96165-0.

[5] Google Developers Contributors. Progressive Web Apps Training: Intro-
duction to Service Worker. url: https://developers.google.com/
web/ilt/pwa/introduction-to-service-worker. (accessed: Dec 7,
2019).

[6] Alex Russell, Jungkee Song, Jake Archibald, and Marijn Kruisselbrink.
W3C Editor’s Draft: Service Workers Nightly. url: https :/ / w3c.
github.io/ServiceWorker/. (accessed: Dec 7, 2019).

[7] MDN Contributors. MDN web docs: CacheStorage. url: https://
developer . mozilla . org / en - US / docs / Web / API / CacheStorage.
(accessed: Nov 30, 2019).

[8] MDN Contributors. MDN web docs: Origin. url: https://developer.
mozilla.org/en- US/docs/Glossary/Origin. (accessed: Nov 30,
2019).

[9] Addy Osmani. Offline Storage for Progressive Web Apps. url: https:
//medium.com/dev-channel/offline-storage-for-progressive-
web-apps-70d52695513c. (accessed: Nov 30, 2019).

[10] Introducing JSON. url: https://www.json.org/json- en.html.
(accessed: Dec 6, 2019).

59

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://developer.apple.com/app-store/review/guidelines/#minimum-functionality
https://developer.apple.com/app-store/review/guidelines/#minimum-functionality
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-200901-201911
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-200901-201911
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://w3c.github.io/ServiceWorker/
https://w3c.github.io/ServiceWorker/
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://medium.com/dev-channel/offline-storage-for-progressive-web-apps-70d52695513c
https://medium.com/dev-channel/offline-storage-for-progressive-web-apps-70d52695513c
https://medium.com/dev-channel/offline-storage-for-progressive-web-apps-70d52695513c
https://www.json.org/json-en.html

8. Conclusion......................................
[11] Marcos Caceres, Kenneth Rohde Christiansen, Mounir Lamouri, Anssi

Kostiainen, Matt Giuca, and Aaron Gustafson. W3C Working Draft:
Web App Manifest. url: https://www.w3.org/TR/2019/WD-appmanifest-
20191204/. (accessed: Nov 31, 2019).

[12] Apple Inc. Safari Web Content Guide: Configuring Web Applications.
url: https://developer.apple.com/library/archive/documentation/
AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/
ConfiguringWebApplications.html. (accessed: Nov 31, 2019).

[13] Joseph Medley. Google Web Fundamentals - Web Push Notifications:
Timely, Relevant, and Precise. url: https://developers.google.
com / web / fundamentals / push - notifications. (accessed: Dec 8,
2019).

[14] MDN Contributors. MDN web docs: Notifications API. url: https://
developer.mozilla.org/en-US/docs/Web/API/Notifications_API.
(accessed: May 2, 2020).

[15] Can I Use Contributors. Can I Use: Notification. url: https : / /
caniuse.com/#search=Notification. (accessed: May 2, 2020).

[16] Apple Inc. Notification Programming Guide for Websites: Configur-
ing Safari Push Notifications. url: https://developer.apple.com/
library/archive/documentation/NetworkingInternet/Conceptual/
NotificationProgrammingGuideForWebsites/PushNotifications/
PushNotifications.html. (accessed: May 2, 2020).

[17] MDN Contributors.MDN web docs: Push API. url: https://developer.
mozilla.org/en- US/docs/Web/API/Push_API. (accessed: May 2,
2020).

[18] Ruadhán O’Donoghue.Web push notifications. url: https://mobiforge.
com/design-development/web-push-notifications. (accessed: May
2, 2020).

[19] Jake Archibald. Google Updates - Introducing Background Sync. url:
https://developers.google.com/web/updates/2015/12/background-
sync. (accessed: May 10, 2020).

[20] Can I Use Contributors. Can I Use: Background Sync. url: https:
//caniuse.com/#search=Background%5C%20sync. (accessed: May 10,
2020).

[21] OWASP Foundation. OWASP Top Ten 2017 Project. url: https :
//www.owasp.org/index.php/Top_10-2017_Top_10. (accessed: Dec
5, 2019).

[22] MDN Contributors. MDN web docs: Critical rendering path. url:
https://developer.mozilla.org/en-US/docs/Web/Performance/
Critical_rendering_path. (accessed: Dec 5, 2019).

[23] Can I Use Contributors. Can I Use: Service Workers. url: https:
//caniuse.com/#feat=serviceworkers. (accessed: Nov 24, 2019).

60

https://www.w3.org/TR/2019/WD-appmanifest-20191204/
https://www.w3.org/TR/2019/WD-appmanifest-20191204/
https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://developers.google.com/web/fundamentals/push-notifications
https://developers.google.com/web/fundamentals/push-notifications
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://caniuse.com/#search=Notification
https://caniuse.com/#search=Notification
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NotificationProgrammingGuideForWebsites/PushNotifications/PushNotifications.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NotificationProgrammingGuideForWebsites/PushNotifications/PushNotifications.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NotificationProgrammingGuideForWebsites/PushNotifications/PushNotifications.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NotificationProgrammingGuideForWebsites/PushNotifications/PushNotifications.html
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://mobiforge.com/design-development/web-push-notifications
https://mobiforge.com/design-development/web-push-notifications
https://developers.google.com/web/updates/2015/12/background-sync
https://developers.google.com/web/updates/2015/12/background-sync
https://caniuse.com/#search=Background%5C%20sync
https://caniuse.com/#search=Background%5C%20sync
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://caniuse.com/#feat=serviceworkers
https://caniuse.com/#feat=serviceworkers

...................................... 8. Conclusion

[24] Inc. Formidable Labs. Formidable Starbucks, Universally Accessible Or-
dering for Established and Emerging Markets. url: https://formidable.
com/work/starbucks- progressive- web- app/. (accessed: Nov 16,
2019).

[25] Uber Technologies Inc. Angus Croll. Building m.uber: Engineering
a High-Performance Web App for the Global Market. url: https :
//eng.uber.com/m-uber/. (accessed: Nov 16, 2019).

[26] Addy Osmani. A Pinterest Progressive Web App Performance Case
Study. url: https : / / medium . com / dev - channel / a - pinterest -
progressive- web- app- performance- case- study- 3bd6ed2e6154.
(accessed: Nov 16, 2019, posted Nov 29, 2017).

[27] Microsoft Inc. TypeScript Documentation. url: https://www.typescriptlang.
org. (accessed: Dec 14, 2019).

[28] Lukas Marx. Is Angular 2+ MVVM? url: https://malcoded.com/
posts/angular-2-components-and-mvvm/. (posted: Dec 06, 2016,
accessed: Dec 21, 2019).

[29] Facebook Inc. React GIT Repository. url: https://github.com/
facebook/react. (accessed: Dec 11, 2019).

[30] Facebook Inc. React Documentation. url: https://reactjs.org/
docs/. (accessed: Dec 11, 2019).

[31] Robin Wieruch. The Road to learn React: Your journey to master
plain yet pragmatic React.js. Independently published, 2018. isbn:
9781720043997.

[32] Facebook Inc. React Documentation: Hooks API Reference. url: https:
//reactjs.org/docs/hooks- reference.html. (accessed: May 5,
2020).

[33] Google Developers Contributors. Google Tools for Web Developers:
Lighthouse. url: https://developers.google.com/web/tools/
lighthouse/. (accessed: Dec 3, 2019).

[34] Pingl s.r.o. Pingl.app company website. url: https://poznej.pingl.
app/en/. (accessed: Dec 14, 2019).

[35] Jesse James Garrett. The Elements of User Experience: User-Centered
Design for the Web and Beyond. New Riders, 2010. isbn: 0321683684.

61

https://formidable.com/work/starbucks-progressive-web-app/
https://formidable.com/work/starbucks-progressive-web-app/
https://eng.uber.com/m-uber/
https://eng.uber.com/m-uber/
https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154
https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154
https://www.typescriptlang.org
https://www.typescriptlang.org
https://malcoded.com/posts/angular-2-components-and-mvvm/
https://malcoded.com/posts/angular-2-components-and-mvvm/
https://github.com/facebook/react
https://github.com/facebook/react
https://reactjs.org/docs/
https://reactjs.org/docs/
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/lighthouse/
https://poznej.pingl.app/en/
https://poznej.pingl.app/en/

62

Appendix A
Content of the enclosed CD:

/
project.pdf...............................pdf version of this text
text source LATEX files of this thesis
PWA Examples......................examples of PWA functionality

01_installable_pwa
02_app_like_experience

wireframes images of the wireframes
01_landing_desktop.png
01_landing.png
02_scanner.png
03_explore_nearby.png
04_map.png

implementation...................source code of the React project

63

	Introduction
	Progressive Web Apps
	What is PWA?
	PWA Principles
	Difference between PWAs and Hybrid Applications
	Transition from Websites to Modern Web Apps

	Service Worker
	Service Worker Lifecycle
	Listening for Events

	Cache Storage API
	Caching Strategies
	Storage Quotas

	Web App Manifest
	Manifest Properties

	Selected PWA Features
	Installable PWA - Add to Home Screen
	App-like PWA - Fullscreen Experience
	Re-engageable PWA - Web Push Notifications
	Reliable PWA - Background Sync

	Security Considerations
	Performance Optimisation
	PWA Compatibility
	PWA Disadvantages
	Real-World Examples

	Technologies for PWA Development
	Typescript
	SPA JS Frameworks
	Angular
	React
	Choosing the Right Framework

	Google Workbox
	Routing & Caching
	Precaching

	Testing with Lighthouse

	Pingl.app - PWA
	Project Scope
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Pingl.app - User Interface
	Screens
	Wireframes

	Pingl.app - Implementation
	Deployment Architecture
	Backend
	Frontend

	Project Setup
	Used Frameworks and Technologies
	Code Quality Tools
	CI/CD Pipelines
	Folder Structure

	Frontend Architecture
	Components
	Redux Store
	GraphQL API Client

	Implemented Functionality
	PWA Features
	Service Workers
	Push Notifications
	Offline Support

	Testing
	Testing with Lighthouse
	Unit Testing
	Performance Testing

	Pingl.app - User Testing
	Preparation
	Target Group
	Environment
	Pre-Test Screening

	Test Cases
	Test Report
	Results

	Conclusion
	Bibliography
	Content of the enclosed CD:

